Improving Results on Convergence of AOR Method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the convergence of the AOR method

In Gao and Huang [Z.X. Gao, T.Z Huang, Convergence of AOR method, Appl. Math. Comput. 176 (2006) 134–140] some practical sufficient conditions for the convergence of the AOR (accelerated overrelaxation) method for solving linear system Ax 1⁄4 b, with A being doubly diagonally dominant matrix, are presented. Using a different approach we will give some improvements in both cases, when the matrix...

متن کامل

Improving AOR method for consistent linear systems

The improvement in AOR method for solving this system has been carried out by Hadjimos [1], Recently, Yao-Tang et al. [2], improved AOR method which has been developed by [1]. In this work, we construct a preconditioner to improve the Accelerated Over-relaxation (AOR) iterative method for solution of linear systems. We reduce the spectral radius of iterative matrix by multiplication of Precondi...

متن کامل

Convergence Analysis of Preconditioned AOR Iterative Method for Linear Systems

MHmatrices appear in many areas of science and engineering, for example, in the solution of the linear complementarity problem LCP in optimization theory and in the solution of large systems for real-time changes of data in fluid analysis in car industry. Classical stationary iterative methods used for the solution of linear systems have been shown to convergence for this class of matrices. In ...

متن کامل

A note on the convergence of the generalized AOR iterative method for linear systems

Recently, some convergent results of the generalized AOR iterative (GAOR) method for solving linear systems with strictly diagonally dominant matrices are presented in [Darvishi, M.T., Hessari, P.: On convergence of the generalized AOR method for linear systems with diagonally dominant cofficient matrices. Appl. Math. Comput. 176, 128-133 (2006)] and [Tian, G.X., Huang, T.Z., Cui, S.Y.: Converg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2012

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2012/274636